Multiple Electron Aqueous Li-ion
Batteries

Technology Overview

The electrochemical stability window of
aqueous electrolyte has been expanded to
~3.1 volts via the formation of SEI.

A 1.9 V full cell using such electrolyte
delivers a record-high 200 Wh/kg (based
on two electrode mass) for 200 cycles.
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Capacity based on total electrode (mAh/g)

Color code: Red: <100 cycles; Blue: 100 to 200 cycles
Green: >1000 cycles *: Our batteries
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Current Status

(1) STATUS: A safe 1.9V cell using 3.1V aqueous
electrolyte can stably provide 200 Wh/kg
(anode+cathode mass) for 200 cycles.

(2) NEXT TECHNICAL: reducing cost of electrolytes

(3) NEXT COMMERCIAL: Is collaborating with Saft

American Inc. to build a 500 Wh demonstration
unit.

(4) HELP NEEDED: Cost modeling expert & new salts

Project Statistics

Award Amount $1.1M

Award Timeline Dec. 2013 — May. 2016

Next Stage Target 500 Wh prototype unit

Partners Sought Saft, ARL, US TARDEC
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Expanded Electrochemical Stability Window:

From1.23Vto3.0V

TRYLN - -
Energy density E = cell voltage V x capacity Q
Electrochemical stability window of Electrolyte control the cell voltage
S Expand the stability window of aqueous electrolyte
S 4 1. Water-in-salt electrolyte reduces the activity of H,0
15 2. Formation of solid electrolyte interphase (SEl) by high concentration of salt anion
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Achievement reported in paper at Science

Formed SEI for the 15 time in aqueous electrolytes

Expanded electrochemical stability of aqueous electrolytes to 3.0 V
Assembled a 2.3 V aqueous LIB that cycled >1000 times at ~100% CE
Energy density: 80~100 Wh/(Kg of total electrode mass);

Stability at both low (0.15 C) and high (4.5 C)

Absolutely safe
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Corrected 24 November 2015; see full text.
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“Water-in-salt” electrolyte
enables high-voltage aqueous
lithium-ion chemistries

Liumin Suo,” Oleg Borodin,* Tao Gao,” Marco Olguin,* Janet Ho,” Xiulin Fan,"

Chao Luo," Chunsheng Wang,™ Kang Xu**

in water. This leads to an anion-cc
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BATTERIES

Opening the window for aqueous electrolytes

Lithium batteries can operate with a safer “water-in-salt” electrolyte

Lithium-ion batteries raise safety, environmental, and cost concerns, which mostly arise
from their nonaqueous electrolytes. The use of aqueous alternatives is limited by their
narrow electrochemical stability window (123 volts), which sets an intrinsic limit on the
practical voltage and energy output We report a highly concentrated aqueous electrolyte
whose window was expanded to ~3.0 volts with the formation of an electrode-electrolyte
interphase. A full lithium-ion battery of 2.3 volts using such an agueous electrolyte was
demonstrated to cycle up to 1000 times, with nearly 100% coulombic efficiency at both

100% coulombic efficiency for up 4
at both low (015 C) and high (.5

Water-in-salt electrolytes
LiTFSI was chosen as the salt becau]
solubility in water (>20 m at 25°
stability against hydrol (15). Whe
concentration is above 5 m, the

definition applies, as the salt outr]

By Leland Smith ond Broce Dunn

v facilitating ion motion between eec-
trodes, electrolytes help to harness the
chemical energy in a battery to pro-
dnee a current and supply usahle eec-
tric power. Among liquid electmbtes,
there are traditional solutions of =alt

=iz can oceur. For other dectrolyte-electrode
combinations, elecrolyte breakdown ean
result in the formaton of inscluble solid
materidls at the electrode surface (4). These
decomposition producds can widen the effec-
tive woltage stability range of the electrobyte
above the thermodynamic vahie

The electrolyte sclvent, =al, and elec-

ceeding what is typically obtained from
aqueons eectrolytes. The high stability is at-
trituted to the electrochemica reduction of
his(triflucmmethane sulfonylimide at the
anode surface, which forms an SEI layer con-
sizting primarily of LiF, and is accompanied
by a shift in the oxygen evolition reaction to
higher voltages (7).

low (0.15 C) and high (4.5 C) discharge and charge rates.

ithium-ion (Li-ion) batteries power much
of our digital and mobile lifestyle (1, 2).
However, their adoption in more strate-
gically important applications such as vehi-
cle electrification and grid storage has been
slower, mainlky because of concerns raised over
their safebv_cost and environmental imnact (3)

the overall electrochemical stability window of
aqueous electrolytes remains constant, anodic
stability against oxygen evolution suffers a cor-
responding compromise, as Tlustrated by a Pour-
baix diagram (). A maximum voltage of 15 V
was achieved in aqueous Li-ion batteries, where
the residnal corrents for Ho or O evalution <tll

solvent in this binary system by both weight
and volume (fig. S1). In these solutions, the
average number of water molecules available
to solvate each ion is far below the “solvation
numbers” that are well established in conventional
electrolytes (~1.0 m). Instead, interionic attractions
become more pronounced relative to solvent-ion
interactions, incurring unusual physicochemical
nroperties (76-20% More important. the inter-
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Long cycle life Aqueous LiFePO,/Water-in-Salt/Mo,Sq
Li-ion Battery for Electric Energy Storage
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L. Suo, F. Han, X. Fan, H. Liu, C. Wang and K. Xu, Journal of Materials Chemistry A, DOI:10.1039/C6TA00451B, (2016)

High Voltage Li-ion battery using Water-in-Bisalt electrolyte
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Achievement Since the paper in Science
* Further expanded the stability window to 3.1V

* Employed more energetic electrochemical couple
* Cathode: LCO, NMC, and LMNO Red: <100 cycles

Blue: 100 to 200 cycles
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* Anode: high capacity anode G* ) >1000 cycles
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High Energy Aqueous Li-ion Batteries based
on various Chemistries
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